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Abstract

Shear horizontal waves, in the form of transient perturbations, are considered at the interface between two different

viscoelastic solids. The admissibility of these interfacial waves is studied via the asymptotic expansion of the Laplace

transform of the viscoelastic kernel. The compatibility condition is reduced to a set of algebraic systems which can be

solved iteratively to the desired order in the asymptotic expansion. Two classes of solutions are found which correspond

to transient waves decaying away from the interface and attenuated along the propagation direction. Numerical ex-

amples are given to illustrate the results.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is known that the plane interface between two different elastic solids can support mechanical distur-

bances, propagating in some direction along the interface, whose amplitude rapidly decreases with the

depth into the bulk of the two solids. Such perturbations, known as Stoneley waves, were originally dis-
cussed under the assumption of monochromatic stationary modes within the linear theory of isotropic

elastic solids (see Stoneley, 1924; Sezawa and Kanai, 1939; Scholte, 1947). As shown in these works,

Stoneley waves with a given polarization are admitted for some ranges of values of the elastic moduli and

densities in the two half-spaces. This peculiarity may be relevant for technological applications of interfacial

waves which, like Rayleigh waves, can be exploited for non-destructive testing of materials or for propa-

gation of pulses in acoustic devices (see for e.g. Goudra and Stawiski, 2000; Hussain and Ogden, 2000).

Non-stationary interfacial waves have been rarely considered in literature even in the simple case of

isotropic media. In this regard we mention the paper by Chadwick (1976) on in-plane Stoneley waves at the
interface of isotropic elastic half-spaces.

Concerning anisotropic solids, the analysis of stationary interfacial waves produces more interesting

results (see Barnett et al., 1985; Abbudi and Barnett, 1990; Barnett, 2000). For instance, unlike Rayleigh

waves, for any set of material parameters and for a given orientation of the interface, forbidden directions
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exist along which Stoneley waves cannot propagate. On the other hand, it should be remarked that, in

contrast to surface waves, interfacial waves can be polarized as shear waves along the surface. In particular,

if two different half-spaces admit a plane of material symmetry which is perpendicular to the plane in-

terface, shear horizontal (SH) waves polarized along the normal to the plane of symmetry can propagate
for suitable values of the material parameters. The aim of the present work is to analyze such modes in the

more general context of transient waves. This approach allows us to discuss the occurrence of wave modes

generated by a mechanical SH pulse of arbitrary shape, switched on at the interface and decaying away

from it. Moreover, we account for dissipative effects due to the presence of viscoelasticity and inquire into

the compatibility of interfacial waves with the thermodynamic restrictions on the viscoelastic tensor.

The constitutive model is outlined in Section 2 according to the well established theory of linear visco-

elasticity. In Section 3 we derive the compatibility conditions for SH waves exploiting a separation of

variables and requiring the continuity of the mechanical displacement and of the traction across the
interface between the viscoelastic half-spaces. The compatibility condition for transient modes is written in

terms of the Laplace transforms of the constitutive kernels and its asymptotic analysis is performed in

Section 4. Here we show that, up to the desired order in the asymptotic expansion, the transformed problem

can be reduced to a set of algebraic systems to be solved iteratively. Real and complex-valued solutions are

discussed in Section 5 and the Laplace transform of the corresponding propagators are inverted. It turns

out that two classes of solutions to the interface problem exist in the form of transient waves. In the first

class the wave amplitude decays exponentially according to an attenuation factor due to viscoelasticity. In

the second class the amplitude decreases as the reciprocal of the distance from the interface, multiplied by
the viscoelastic attenuation factor. Numerical examples are given in Section 6 to illustrate the wave

behavior due to a square pulse switched on at the interface.

2. Viscoelastic interfaces

LetS be a plane interface between two viscoelastic anisotropic and homogeneous half-spaces B1 andB2.

We assume that an axis e exists along S which is a common twofold axis of symmetry or the normal to a

common plane of symmetry for both B1 and B2. We choose Cartesian orthogonal axes ex, ey , ez with ez ¼ e

and such that ey be normal toS and directed towards the interior ofB1 (see Fig. 1). According to the linear

theory of viscoelasticity we write the Cauchy stress Tðx; tÞ as a linear functional of the history of the in-

finitesimal strain Eðx; tÞ ¼ 1
2
½ruþ ðruÞT�ðx; tÞ, where uðx; tÞ is the mechanical displacement. Hence the

following constitutive equation is assumed for both the regions B1 and B2,

Fig. 1. Geometry of the SH wave problem at an interface.
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Tðx; tÞ ¼ G0Eðx; tÞ þ
Z 1

0

G0ðsÞEðx; t 
 sÞds; ð2:1Þ

where GðtÞ is the viscoelastic (fourth-order) symmetric tensor and G0 ¼ Gð0Þ represents the instantaneous
elastic modulus. In the following we shall take G 2 C1ðRþÞ and, as usual, the tensor G0 will be assumed

positive definite. In addition, as a consequence of the second law of thermodynamics, G0ðtÞ turns out to be

negative semidefinite at t ¼ 0 (see Fabrizio and Morro, 1988). Adopting the customary six-dimensional

notation, the previous hypotheses on the material symmetry of B1 and B2 amount to the following res-

trictions on the entries of G,

GabðtÞ ¼ GbaðtÞ ¼ 0 for a ¼ 4; 5; b 6¼ 4; 5; t 2 Rþ; ð2:2Þ

while the thermodynamic inequalities imply, in particular,

G0
44 > 0; G0

55 > 0; G0
44G

0
55 
 G0

45
2 > 0;

G0
44 6 0; G0

55 6 0; G0
44G

0
55 
 G0

45
2 P 0 at t ¼ 0;

ð2:3Þ

where G0
ab ¼ Gabð0Þ.

Obviously, the two half-spaces B1 and B2 comply with different values of the entries G0
ab and G0

abð0Þ. The
cases of two purely elastic half-spaces or of an elastic half-space, say B1, matched with a viscoelastic B2 will

be characterized respectively by G0
ab ¼ 0 identically in both B1 and B2 or only in B1. Special transient

modes in these cases will be briefly discussed in the last section.

3. Compatibility conditions for SH waves

In the following we deal with waves propagating along the sagittal plane spanned by ex and ey , within B1

and B2. As a consequence we suppose that the perturbation is independent on z. Then, according to Eqs.

(2.1) and (2.2), the equations of motion take the following form:

qux;tt ¼ ðG11½ux� þ G16½uy �Þ;xx þ ðG66½ux� þ G26½uy �Þ;yy þ f2G16½ux� þ ðG12 þ G66Þ½uy �g;xy ;
quy;tt ¼ ðG16½ux� þ G66½uy �Þ;xx þ ðG26½ux� þ G22½uy �Þ;yy þ f2G26½uy � þ ðG12 þ G66Þ½ux�g;xy ;

ð3:1Þ

quz;tt ¼ G55½uz;xx� þ G44½uz;yy � þ 2G45½uz;xy �; ð3:2Þ

where commas denote partial differentiation and where Gab are integral operators defined as

Gab½f �ðtÞ ¼ G0
abf ðtÞ þ

Z t

0

G0
abðsÞf ðt 
 sÞds; a; b ¼ 1; . . . ; 6

for any field f 2 L1ðRþÞ. In doing so we have implicitly assumed that perturbations are absent for t < 0. We

also require the continuity of the mechanical displacement u and of the traction Tey across S. By choosing

the origin of the coordinate system at the interface S, we get

sGa1½ux;x� þ Ga6½uy;x þ ux;y � þ Ga2½uy;y �t ¼ 0; a ¼ 2; 6; suxt ¼ suyt ¼ 0; ð3:3Þ

sG45½uz;x� þ G44½uz;y �t ¼ 0; suzt ¼ 0; ð3:4Þ

where sf t ¼ f jy¼0þ 
 f jy¼0
 . In the stationary case, interfacial waves are defined as perturbations with non-
vanishing amplitudes in the neighborhood ofS and an additional asymptotic condition is required to allow

for their damping at large distances fromS. Considering transient solutions to the dynamic problem, it will
be sufficient to impose that u be bounded for any y 2 R.
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In view of Eqs. (3.1)–(3.4), the problem decouples into two distinct systems concerning waves polarized

on the sagittal plane and shear horizontal (SH) waves polarized on ez. In the following we shall be interested

only in SH solutions governed by Eqs. (3.2), (3.4) and pose uz ¼ u.
In order to study the occurrence of transient waves propagating along the surface S, we adopt a sepa-

ration of dependence on the space variables x and y, by writing the displacement u in the form of a con-

volution of split fields,

uðx; y; tÞ ¼ ½uaðx; �Þ � ubðy; �Þ�ðtÞ ð3:5Þ

where ða � bÞðtÞ ¼
R t
0
aðsÞbðt 
 sÞds. Accordingly, denoting by f̂f ðsÞ the Laplace transform of f ðtÞ, from

Eqs. (3.2) and (3.4) we obtain the following transformed problem

qs2ûuaûub ¼ sĜG44ûuaûub;yy þ sĜG55ûubûua;xx þ 2sĜG45ûua;xûub;y ; ð3:6Þ

sĜG45ûua;xûub þ ĜG44ûuaûub;yt ¼ 0; sûubt ¼ 0: ð3:7Þ

Solutions to Eq. (3.6) can be written in the form

ûuaðx; sÞ ¼ aðsÞ exp½KðsÞx�;

ûubðy; sÞ ¼ bðsÞ exp½HðsÞy�:
ð3:8Þ

With the requirement of boundedness in B1 and B2, we must have

ûubðy; sÞ ¼
b1ðsÞ exp½H1ðsÞy�; for y > 0;
b2ðsÞ exp½
H2ðsÞy�; for y < 0;

�
ð3:9Þ

RH1ðsÞ6 0; RH2ðsÞ6 0; 8s 2 C: ð3:10Þ

In view of Eqs. (3.8), the problems (3.6) and (3.7) take the form

q1s
2 ¼ sĜGð1Þ

44 ðsÞH 2
1 ðsÞ þ sĜGð1Þ

55 ðsÞK2ðsÞ þ 2sĜGð1Þ
45 ðsÞKðsÞH1ðsÞ;

q2s
2 ¼ sĜGð2Þ

44 ðsÞH 2
2 ðsÞ þ sĜGð2Þ

55 ðsÞK2ðsÞ 
 2sĜGð2Þ
45 ðsÞKðsÞH2ðsÞ;

ð3:11Þ

ĜG
ð1Þ
45 ðsÞKðsÞ þ ĜG

ð1Þ
44 ðsÞH1ðsÞ ¼ ĜG

ð2Þ
45 ðsÞKðsÞ 
 ĜG

ð2Þ
44 ðsÞH2ðsÞ;

b1ðsÞ ¼ b2ðsÞ ¼: bðsÞ;
ð3:12Þ

where the superscripts (1) and (2) denote quantities pertaining to B1 and B2 respectively. Eqs. (3.11) and

(3.12), together with the conditions (3.10) represent the compatibility conditions for SH waves propagating

along the interface S.

4. Asymptotic analysis of the compatibility conditions

Here we assume that the viscoelastic tensor can be expanded in Taylor series in the neighborhood of
t ¼ 0. Then, by the Watson�s lemma, we obtain the following expansions for the Laplace transforms of the

quantities Gab,
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sĜGðqÞ
44 ðsÞ ¼ AðqÞ

0 þ
XN
k¼1

AðqÞ
k

sk
þ RN

AqðsÞ;

sĜGðqÞ
55 ðsÞ ¼ CðqÞ

0 þ
XN
k¼1

CðqÞ
k

sk
þ RN

CqðsÞ; q ¼ 1; 2;

sĜGðqÞ
45 ðsÞ ¼ BðqÞ

0 þ
XN
k¼1

BðqÞ
k

sk
þ RN

BqðsÞ;

ð4:1Þ

where, according to the pertinent half-space, A0 ¼ G0
44, C0 ¼ G0

55, B0 ¼ G0
45, and where Ak, Ck, and Bk are,

respectively, the kth derivatives of G44, G55 and G45, valued at t ¼ 0. The functions RNðsÞ in the right hand
sides of (4.1) are suitable remainder terms satisfying the requirements

jRNðsÞj6MN ;njsj
N
1
for RsP a; jarg sj6 p

2

 n ð4:2Þ

with a; n 2 Rþþ and MN ;n 2 Rþ. If Eqs. (4.1) are substituted into (3.11) we realize that H1ðsÞ, H2ðsÞ and KðsÞ
must have a pole of order one at s ¼ 1 and the following expansions hold:

KðsÞ ¼ k0sþ k1 þ
XN
m¼1

kmþ1
sm

þ RN
KðsÞ;

H1ðsÞ ¼ hð1Þ0 sþ hð1Þ1 þ
XN
m¼1

hð1Þmþ1
sm

þ RN
1 ðsÞ;

H2ðsÞ ¼ hð2Þ0 sþ hð2Þ1 þ
XN
m¼1

hð2Þmþ1
sm

þ RN
2 ðsÞ;

ð4:3Þ

where RN
K , R

N
1 , R

N
2 satisfy conditions analogous to (4.2). Substitution of Eqs. (4.3) and (4.1) into Eqs. (3.11)

and (3.12) yields a system for the expansion coefficients km, hð1Þm , hð2Þm , ðm ¼ 0; 1; 2; . . . ;N þ 1Þ. Disregarding
the remainder terms RN and equating terms of the same order in s, this system turns out to be equivalent to
a set of N þ 2 systems which can be solved iteratively starting from the following zeroth order equations:

q1 ¼ Að1Þ
0 hð1Þ

2

0 þ Cð1Þ
0 k20 þ 2Bð1Þ

0 hð1Þ0 k0;

q2 ¼ Að2Þ
0 hð2Þ

2

0 þ Cð2Þ
0 k20 
 2Bð2Þ

0 hð1Þ0 k0;

Bð1Þ
0 k0 þ Að1Þ

0 hð1Þ0 ¼ Bð2Þ
0 k0 
 Að2Þ

0 hð2Þ0 :

ð4:4Þ

We remark that, if Bð1Þ
0 ¼ Bð2Þ

0 , Eq. (4.4)3 implies Að1Þ
0 hð1Þ0 þ Að2Þ

0 hð2Þ0 ¼ 0. In view of inequalities (2.3) and

(3.10), this equation does not admit solutions in the form of interfacial waves. In particular, it applies if B1

and B2 are such that Bð1Þ
0 ¼ Bð2Þ

0 ¼ 0. In this case the previous solution corresponds to a transient bold

transverse wave occurring if Cð1Þ
0 =q1 ¼ Cð2Þ

0 =q2 ¼ c2T , where cT is the common speed of SH bold waves

propagating along the x-axis in B1 and B2. The counterpart of this solution in the stationary isotropic case

is depicted in the case 2 in Barnett et al. (1985, Section 4).

In the general case, when Bð1Þ
0 6¼ Bð2Þ

0 , accounting for inequalities (3.10), Eqs. (4.4) admit the following
solutions:

k20 ¼
Að2Þ
0 q2 
 Að1Þ

0 q1

a2 
 a1
; hðqÞ0� ¼ ð
1Þq

AðqÞ
0

"

 BðqÞ

0

ck
� b

#
; q ¼ 1; 2 ð4:5Þ
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with

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að1Þ
0 q1a2 
 Að2Þ

0 q2a1
a2 
 a1

s
; ð4:6Þ

and where a1 ¼ Að1Þ
0 Cð1Þ

0 
 Bð1Þ2
0 , a2 ¼ Að2Þ

0 Cð2Þ
0 
 Bð2Þ2

0 . Provided that

Bð2Þ
0 > Bð1Þ

0 ; ðAð2Þ
0 q2 
 Að1Þ

0 q1Þða2 
 a1Þ > 0; ð4:7Þ
and without loss of generality, we can choose Rk0 < 0, which implies forward propagation along the x-axis,
and write

k0 ¼ 
 1

ck
; ck ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 
 a1

Að2Þ
0 q2 
 Að1Þ

0 q1

s
: ð4:8Þ

In view of Eq. (4.6), real solutions for hðqÞ0� are obtained if the additional condition holds

ðAð1Þ
0 q1a2 
 Að2Þ

0 q2a1Þða2 
 a1ÞP 0; ð4:9Þ
otherwise, complex conjugate solutions, compatible with (3.10), exist for Bð1Þ

0 < 0, Bð2Þ
0 > 0.

In absence of viscoelastic effects, the expansion coefficients km, hð1Þm , hð2Þm , ðm ¼ 1; 2; . . .Þ vanish identically
and Eqs. (4.5)–(4.8) characterize all possible solutions for the problem at hand. As an illustrative example,

elastic parameters which allow for such solutions are shown in Fig. 2 assuming that B1 consists of a crystal

0.01

0.10

1.00

10.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

r

γ

Fig. 2. Compatibility regions for elastic (dashed) and viscoelastic (solid) interfacial waves: r ¼ q2=q1 and c ¼ Gð2Þ
44 =G

ð1Þ
44 .
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of quartz with normal to the plane of material symmetry directed as ez. The pertinent material data are

given in Table 1. For definiteness we suppose that B2 belongs to a more symmetric crystal class such that

Gð2Þ
44 ¼ Gð2Þ

55 and Gð2Þ
45 ¼ 0. In this instance, for not small values of the rate c ¼ Gð2Þ

44 =G
ð1Þ
44 , compatible elastic

solutions are obtained at density rates r ¼ q2=q1 sufficiently close to 1.

Viscoelastic solutions are obtained by solving iteratively the following systems:

ðAð1Þ
0 hð1Þ0 þ Bð1Þ

0 k0Þhð1Þm þ ðCð1Þ
0 k0 þ Bð1Þ

0 hð1Þ0 Þkm ¼ 
 1

2

gX
iþjþl¼m

X
iþjþl¼m

E
ð1Þ
i �Qð1Þ

j E
ð1Þ
l ;

ðAð2Þ
0 hð2Þ0 
 Bð2Þ

0 k0Þhð2Þm þ ðCð2Þ
0 k0 
 Bð2Þ

0 hð2Þ0 Þkm ¼ 
 1

2

gX
iþjþl¼m

X
iþjþl¼m

E
ð2Þ
i �Qð2Þ

j E
ð2Þ
l ;

Að1Þ
0 hð1Þm þ Að2Þ

0 hð2Þm þ Bð1Þ
0




 Bð2Þ

0

�
km ¼ 


X
iþj¼m
1

Bð1Þ
i


h

 Bð2Þ

i

�
kj þ Að1Þ

i hð1Þj þ Að2Þ
i hð2Þj

i ð4:10Þ

for m ¼ 1; 2; . . . ;N þ 1, where

E
ðqÞ
i ¼ hðqÞi

ki

� �
; Q

ðqÞ
j ¼ AðqÞ

j ð
1Þq
1BðqÞ
j

ð
1Þq
1BðqÞ
j CðqÞ

j

 !
; q ¼ 1; 2;

and where a superimposed tilde denotes summation with i; l ¼ 0; 1; . . . ;m
 1 and j ¼ 0; 1; . . . ;m. Once the
quantities hð1Þi , hð2Þi , ki, ði ¼ 1; . . . ;m
 1Þ are substituted into the right hand side of (4.10), a linear system is

obtained for hð1Þm , hð2Þm and km. It is easy to show that if fðhð1Þm ; hð2Þm ; kmÞ;m ¼ 1; . . . ;N þ 1g is a solution of Eqs.
(4.10), then also its complex conjugate fð�hhð1Þm ; �hhð2Þm ; �kkmÞ;m ¼ 1; . . . ;N þ 1g is a solution. In particular, for

m ¼ 1, using Eqs. (4.8), the solution of (4.10) can be written as

hð1Þ1� ¼� 1

Að1Þ
0 Xb

Að1Þ
0

c2k
Qð2Þ

1 ½Að2Þ
0 ;Bð2Þ

0 �
"(


 b2 Að2Þ
1 Að1Þ

0




 Að1Þ

1 Að2Þ
0

�# a1
ck

�
� bBð1Þ

0

�


 Að2Þ
0

c2k
Qð1Þ
1 Að1Þ

0 ;Bð1Þ
0

h i a2
ck

�
� bBð1Þ

0

�
� Að2Þ

0

ck
bða1 
 a2Þ

2

ck
Að1Þ
1 Bð1Þ

0


�

 Bð1Þ

1 Að1Þ
0

�
� bAð1Þ

1

�)
; ð4:11Þ

hð2Þ1� ¼� 1

Að2Þ
0 Xb

Að2Þ
0

c2k
Qð1Þ

1 ½Að1Þ
0 ;Bð1Þ

0 �
"(


 b2 Að1Þ
1 Að2Þ

0




 Að2Þ

1 Að1Þ
0

�# a2
ck

�
� bBð2Þ

0

�


 Að1Þ
0

c2k
Qð2Þ
1 Að2Þ

0 ;Bð2Þ
0

h i a1
ck

�
� bBð2Þ

0

�
� Að1Þ

0

ck
bða2 
 a1Þ

2

ck
Bð2Þ
1 Að2Þ

0


�

 Að2Þ

1 Bð2Þ
0

�
� bAð2Þ

1

�)
; ð4:12Þ

k1 ¼
1

X
Að1Þ
0 Qð2Þ

1 Að2Þ
0 ;Bð2Þ

0

h i

 Að2Þ

0 Qð1Þ
1 Að1Þ

0 ;Bð1Þ
0

h i
 � 1

ck
þ Að2Þ

1 Að1Þ
0 
 Að1Þ

1 Að2Þ
0


 �
b2

� �
; ð4:13Þ

Table 1

Material parameters for the half-space B1 (quartz)

q1 ¼ 2:65� 103 kg/m3

Gð1Þ
44 ¼ 5:79� 1010 Pa

Gð1Þ
55 ¼ 3:99� 1010 Pa

Gð1Þ
45 ¼ 
1:79� 1010 Pa
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where X ¼ ð2=ckÞAð1Þ
0 Að2Þ

0 ða1 
 a2Þ, and where

QðqÞ
1 ½a; b� ¼ AðqÞ

1 a2 þ CðqÞ
1 b2 þ 2ð
1Þq
1BðqÞ

1 ab; q ¼ 1; 2:

The signs in Eqs. (4.11) and (4.12) must be chosen according to the choice adopted in Eq. (4.5)2. From Eq.

(4.13) we realize that k1 is real, while h
ð1Þ
1�, h

ð2Þ
1� turn out to be real if the inequality (4.9) holds. Otherwise, they

consist in pairs of complex conjugate solutions. In view of inequalities (3.10), viscoelastic solutions require

the additional restrictions Rhð1Þ1 6 0, Rhð2Þ1 6 0. Moreover, the assumption of forward propagation along x,
implies k1 6 0. Elastic parameters which allow for these conditions are shown in Fig. 2 under the definite

assumptions AðqÞ
1 ¼ 
jAðqÞ

0 , CðqÞ
1 ¼ 
jCðqÞ

0 , BðqÞ
1 ¼ jBðqÞ

0 , ðq ¼ 1; 2Þ, j > 0. It is worth remarking that SH

interfacial waves compatible with a pair of elastic half-spaces may not be supported at interfaces between

viscoelastic media characterized by the same values of AðqÞ
0 , BðqÞ

0 , CðqÞ
0 . In addition, in view of the present

assumptions on AðqÞ
1 , BðqÞ

1 , CðqÞ
1 , the restrictions on the existence of viscoelastic interfacial waves turn out to

be independent on the parameter j which measures the extent of the dissipative effects.

5. Transient modes

We assume that a mechanical perturbation u0ðtÞ ¼ uð0; 0; tÞ be given at the line x ¼ 0, y ¼ 0 on S for

tP 0 and introduce the wave propagatorsPð1Þ andPð2Þ, pertinent respectively to the half-spaces B1 andB2,

via the following convolutions:

uðqÞðx; y; tÞ ¼ PðqÞðx; y; �Þ � u0ð�Þ
� �

ðtÞ; q ¼ 1; 2: ð5:1Þ

Performing the Laplace transformation of Eq. (3.5), taking into account Eqs. (3.8), (3.9) and (5.1), we get

aðsÞbðsÞ ¼ ûu0ðsÞ and, up to terms of order N in the expansions (4.3),

P̂PðqÞðx; y; sÞ ¼ exp sðqÞ0 ðx; yÞs
"

þ sðqÞ1 ðx; yÞ þ
XN
m¼1

sðqÞmþ1ðx; yÞ
sm

#
: ð5:2Þ

where, adopting the notation hðqÞm ¼ fðqÞm þ igðqÞ
m ðm ¼ 0; 1; . . . ;NÞ, kmþ1 ¼ nmþ1 þ immþ1 ðm ¼ 1; . . . ;NÞ,

sðqÞ0 ðx; yÞ ¼ 
 x
ck


 ð
1Þq fðqÞ0



þ igðqÞ

0

�
y;

sðqÞ1 ðx; yÞ ¼ k1x
 ð
1Þq fðqÞ1



þ igðqÞ

1

�
y;

sðqÞmþ1 ¼ ðnmþ1 þ immþ1Þx
 ð
1Þq fðqÞmþ1



þ igðqÞ

mþ1

�
y; m ¼ 1; . . . ;N :

ð5:3Þ

If inequality (4.9) is satisfied, systems (4.4) and (4.10) admit real solutions and the transforms (5.2) can be
inverted to obtain PðqÞ ¼ PðqÞ

a , with

PðqÞ
a ðx; y; tÞ ¼ exp k1x

h

 ð
1ÞqfðqÞ1 y

i
d t
�(


 x
ck


 ð
1ÞqfðqÞ0 y
�

þ
YN
m¼1

� Sm nmþ1x
�


 ð
1ÞqfðqÞmþ1y; t 

x
ck


 ð 
 1ÞqfðqÞ0 y
�)

; q ¼ 1; 2; ð5:4Þ

where

Smðr; sÞ ¼ 
 sm
1

ðm
 1Þ! r0Fm
mþ 1

2
;
mþ 2

2
; . . . ; 2;

�

 s

m


 �m
r

�
; m ¼ 1; . . . ;N :

The quantities 0Fm represent hypergeometric functions and the symbol
QN

m¼1 � stands for the composition of
N convolutions on ð0; tÞ. In view of Eq. (5.4), transient SH interfacial waves propagate along the surface S
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with speed ck and their amplitude is attenuated in B1 and B2 according to the damping factors

exp½k1x
 ð
1ÞqfðqÞ1 y�, ðq ¼ 1; 2Þ. We observe that the wave fronts t ¼ ðx=ckÞ þ ð
1ÞqfðqÞ0 y, ðq ¼ 1; 2Þ, propa-
gate with the speeds

cðqÞ ¼ ckffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2kðf

ðqÞ
0 Þ2

q ; q ¼ 1; 2; ð5:5Þ

and, in general, are not parallel to the respective planes of constant amplitudes k1x
 ð
1ÞðqÞfðqÞ1 y¼ const. In
this respect, interfacial SH waves governed by the propagator (5.4), consist of inhomogeneous waves (see

for e.g. Caviglia and Morro, 1992).

If inequality (4.9) is not satisfied, sðqÞ0 , sðqÞ1 , sðqÞmþ1 ðm ¼ 1; . . . ;NÞ take complex values in the form of

conjugate pairs. In this case it is also possible to obtain transient solutions which satisfy inequalities (3.10).

In fact, exploiting the existence of complex conjugate solutions for hðqÞm , we can write Eq. (5.2) in the form

P̂PðqÞðx; y; sÞ ¼ P̂PðqÞ
a ðx; y; sÞP̂PðqÞ

b ðx; y; sÞ; q ¼ 1; 2; ð5:6Þ

where P̂PðqÞ
a is the Laplace transform of (5.4) and

P̂P
ðqÞ
b ðx; y; sÞ ¼

exp ið
1Þq
1UðsÞxþ i gðqÞ
1 þ V ðqÞðsÞ


 �
y

h i
; IV ðqÞðsÞP 0;

exp 
ið
1Þq
1UðsÞx
 i gðqÞ
1 þ V ðqÞðsÞ


 �
y

h i
; IV ðqÞðsÞ < 0;

8<: q ¼ 1; 2; ð5:7Þ

UðsÞ ¼
XN
m¼1

mmþ1
sm

; V ðqÞðsÞ ¼ gðqÞ
0 sþ

XN
m¼1

gðqÞ
mþ1
sm

; q ¼ 1; 2:

In the last expression, without loss of generality we have supposed gðqÞ
0 > 0 ðq ¼ 1; 2Þ. The transforms (5.7)

are similar to those obtained in the study of surface SH transient waves in piezoelectric media (see Romeo,

2001). According to the procedure adopted in that context, the Laplace inverse transform of (5.7) can be

written as

P
ðqÞ
b ðx; y; tÞ ¼ 1

pgðqÞ
0

Z t=gðqÞ
0

0

d t

"


 gðqÞ
0 x

�
þ
YN
m¼1

� Sm ð
�


1Þq
1mmþ1
x
y
þ gðqÞ

mþ1; t 
 gðqÞ
0 x

�#

� y cosðgðqÞ
1 yÞ 
 x sinðgðqÞ

1 yÞ
y2 þ x2

dx; q ¼ 1; 2: ð5:8Þ

The wave propagators PðqÞ in this case are given by the convolution of Eqs. (5.4) and (5.8). The resulting

transient modes are inhomogeneous and characterized by wave speeds and attenuation factor in the same

form of the previous case. Qualitative changes pertain mainly to the profile of the wave amplitude.

6. Examples

In order to illustrate the results obtained in the previous section we consider here two examples of visco-

elastic interfaces where constitutive parameters satisfy inequalities (4.7) and allow for viscoelastic wave

modes. In both instances we shall assume that the half-spaceB1 be determined by the parameters in Table 1.

In the first example we suppose, according to the setting of Fig. 2, that Gð2Þ
55 ¼ Gð2Þ

44 , G
ð2Þ
45 ¼ 0. Among the

values of the parameters which turn out to be consistent with the existence of viscoelastic interfacial waves
we consider c ¼ 0:05 and r ¼ 0:38 which correspond to an half-space B2 made of ice. Unfortunately,

definite data on the viscoelastic quantities AðqÞ
1 , BðqÞ

1 , CðqÞ
1 and in turn, on the parameter j are not available.

In the following we take j ¼ 0:1. With these choices inequality (4.9) turns out to be satisfied and real
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admissible values of k0, k1, h
ðqÞ
0 , hðqÞ1 , q ¼ 1; 2, are obtained from (4.5) and (4.11)–(4.13). These results, to-

gether with the corresponding wave speeds ck, cð1Þ, cð2Þ, given by Eqs. (4.8) and (5.5), are shown in Table 2.

Now we suppose that a square pulse of width sp is switched on at x ¼ 0, y ¼ 0 for t ¼ 0, i.e.,

u0ðtÞ ¼ HðtÞHðsp 
 tÞ ð6:1Þ

where H is the Heaviside�s unit step function. The propagating field is obtained by the convolution

ðPðqÞ
a � u0ÞðtÞ ðq ¼ 1; 2Þ, where PðqÞ

a are given by Eq. (5.4). In Fig. 3 we show the resulting amplitude in the

first approximation, i.e., retaining expansion terms up to the first order. These figures bear evidence of the

wave damping which is solely due to the attenuation factor in (5.4).

In the second example we look for complex values of hð1Þ0 , hð2Þ0 , and choose material parameters for B2 in
such a way that inequality (4.7) be satisfied. Accordingly, we no longer make the hypothesis Gð2Þ

45 ¼ 0 which

was at the basis of the evaluations in Fig. 2 and take Gð2Þ
45 ¼ 0:9� 1010 Pa, c ¼ 1:04 and r ¼ 1:77 which

correspond to an half-space B2 made of lithium niobate (LiNbO3). In this case inequalities (4.7) are again

satisfied while (4.9) does not hold. As noted in Section 4, k1 turns out to be real and hðqÞ0 ; hðqÞ1 take complex

Table 2

Wave parameters for the first example

k0 ¼ 
2:756� 10
4 s/m k1 ¼ 
2:269� 10
5 m
1 ck ¼ 3628 m/s

hð1Þ0 ¼ 
5:914� 10
5 s/m hð1Þ1 ¼ 
2:299� 10
5 m
1 cð1Þ ¼ 3547 m/s

hð2Þ0 ¼ 
5:214� 10
4 s/m hð2Þ1 ¼ 
2:136� 10
5 m
1 cð2Þ ¼ 1696 m/s

Table 3

Wave parameters for the second example

k0 ¼ 
2:880� 10
4 s/m k1 ¼ 
5:533� 10
6 m
1

hð1Þ0 ¼ ð
8:904� 10
5 � 5:889� 10
5iÞ s/m hð1Þ1 ¼ ð
1:952� 10
5 � 4:972� 10
5iÞ m
1

hð2Þ0 ¼ ð
4:305� 10
5 � 5:663� 10
5iÞ s/m hð2Þ1 ¼ ð
9:437� 10
6 � 4:781� 10
5iÞ m
1

ck ¼ 3472 m/s cð1Þ ¼ 3317 m/s, cð2Þ ¼ 3434 m/s

Fig. 3. The amplitude of a transient solution corresponding to a square pulse with sp ¼ 2s for the first example, in the plane ðx; yÞ at
two different times: (a) t ¼ 5s and (b) t ¼ 10s.
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values in the form of conjugate pairs. The results for the corresponding wave parameters are shown in

Table 3 for j ¼ 0:1.
As to the wave behavior, also in this case we have considered an initial square pulse in the form of

Eq. (6.1). Fig. 4 shows the propagating pulse in the same approximation as in the previous example. In this
case we remark that wave amplitudes vanish at large distances from S as 1=y.

7. Concluding remarks

We have shown that the interface S between two viscoelastic anisotropic half-spaces B1, B2 can drive

SH transient waves whose amplitude vanishes at large distances from S. The solutions presented here can

be viewed as a simple generalization of the stationary case since they are based on a separation of space

variables which allows us to write the mechanical displacement as the convolution of two spatially inde-

pendent fields. Owing to this assumption, we obtain plane wave fronts propagating in B1 and B2.

It is worth remarking that, in the case of purely elastic solids, the solutions obtained in Section 5 still exist
in a simpler form. In fact, in absence of viscoelasticity, Eq. (5.4) yields

PðqÞ
a ðx; y; tÞ ¼ d t

�

 x
ck


 ð
1ÞqfðqÞ0 y
�
; q ¼ 1; 2; ð7:1Þ

and, from Eq. (5.8), we obtain

P
ðqÞ
b ðx; y; tÞ ¼ gðqÞ

0

p
y

gðqÞ2
0 y2 þ t2

; q ¼ 1; 2: ð7:2Þ

We note that the first class of solutions, represented by Eq. (7.1), consists of not decaying homogeneous

transient waves. The second class of solutions, represented by the convolution of the propagators (7.1) and

(7.2), consists of inhomogeneous transient waves whose amplitude decreases as 1=y at large distances from
S.
Finally, one can consider a viscoelastic/elastic interface. In this case the viscoelastic solutions (5.4) and

(5.8) can be matched at the interface with the corresponding elastic solutions (7.1) and (7.2).

Fig. 4. The amplitude of a transient solution corresponding to a square pulse with sp ¼ 0:5s for the second example, in the plane ðx; yÞ
at two different times: (a) t ¼ 2s and (b) t ¼ 3s.
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